Lebesgue measure of Julia sets and escaping sets of certain entire functions
نویسندگان
چکیده
منابع مشابه
Lebesgue measure of escaping sets of entire functions of completely regular growth
We give conditions ensuring that the Julia set and the escaping set of an entire function of completely regular growth have positive Lebesgue measure. The essential hypotheses are that the indicator is positive except perhaps at isolated points and that most zeros are located in neighborhoods of finitely many rays. We apply the result to solutions of linear differential equations.
متن کاملEntire Functions with Julia Sets of Positive Measure
Let f be a transcendental entire function for which the set of critical and asymptotic values is bounded. The Denjoy-Carleman-Ahlfors theorem implies that if the set of all z for which |f(z)| > R has N components for some R > 0, then the order of f is at least N/2. More precisely, we have log logM(r, f) ≥ 1 2 N log r − O(1), where M(r, f) denotes the maximum modulus of f . We show that if f doe...
متن کاملThe Hausdorff Dimension of Julia Sets of Entire Functions Iv
It is known that, for a transcendental entire function f, the Hausdorff dimension of J( f ) satisfies 1% dim J( f )% 2. For each d ` (1, 2), an example of a transcendental entire function f with dim J( f ) ̄ d is given. It is then indicated how this function can be modified to produce a transcendental meromorphic function F with one pole with dim J(F ) ̄ d. These appear to be the first examples o...
متن کاملHausdorff Dimensions of Escaping Sets of Transcendental Entire Functions
Let f and g be transcendental entire functions, each with a bounded set of singular values, and suppose that g ◦ φ = ψ ◦ f , where φ, ψ : C → C are affine. We show that the escaping sets of f and g have the same Hausdorff dimension. Using a result of the second author, we deduce that there exists a family of transcendental entire functions for which the escaping set has Hausdorff dimension equa...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Fundamenta Mathematicae
سال: 2018
ISSN: 0016-2736,1730-6329
DOI: 10.4064/fm477-11-2017